中井 悦司 著
「機械学習を支える『数学』をもう一度しっかりと勉強したい」方々に向け、理工系の大学生が学ぶ『確率統計学』を基礎から解説した書籍です。
■本書の特徴
・機械学習を支える大学数学の3分野のうち、確率統計学を順序立てて学習できる(既刊『技術者のための基礎解析学』『技術者のための線形代数学』との姉妹編。これら3冊で大学数学の3分野を学ぶことができる)
・定義と定理をもとに、厳密に展開される議論を丁寧に説明している(再入門者に理解しやすい)
・各章の最後に理解を深めるための演習問題を用意
■対象読者
・大学1、2年のころに学んだ数学をもう一度、基礎から勉強したいエンジニア
※理系の高校数学の知識が前提となります。理工系の大学1、2年生が新規に学ぶ教科書としても利用いただけます。
確率統計学を扱う本書では、「コンピューターの乱数によるシミュレーションで現実世界の不確定な現象を再現する」ことを確率モデルの目標とすることで、抽象的な確率空間が果たす役割を明確にするというアプローチを取りました。その上で、条件付き確率や事象の独立性など、ともすれば直感的な理解にとどまりがちな点について、その基本的な性質をできるだけ厳密に導出することを心がけています。
ここには、確率空間の「仕組み」を理論的に理解するという意図があります。これにより、パラメトリック推定や仮説検定など、確率モデルを構成・検証する手続きについて、その役割をより明瞭に理解することができます。
また、「技術者のための」と冠した三部作(解析学・線形代数学・確率統計学)のまとめとして、本書の付録(Appendix A 機械学習への応用例)では、これらを総合した応用分野の1つである機械学習の基礎的なアルゴリズムについて、その原理を数学的な観点から解説します。
本書を含む三部作を通して、直感的な理解にとどまらない、「厳密な数学」の世界をあらためて振り返り、じっくりと味わっていただければ幸いです。
第1章で紹介した「お年玉」に関する確率問題について、実際に確率モデルを構成することで、この問題に含まれた「トリック」を解き明かします。また、この問題について、Pythonのコードを用いて、実際にコンピューターシミュレーションを行なう例も紹介します。
Chapter 1 確率空間と確率変数
1.1 確率モデルの考え方
1.2 根元事象と確率の割り当て
1.3 条件付き確率と独立事象
1.4 確率変数と確率分布
1.5 主要な定理のまとめ
1.6 演習問題
Chapter 2 離散型の確率分布
2.1 確率変数の期待値と分散
2.2 共分散と相関係数
2.3 主要な離散型確率分布
2.3.1 離散一様分布
2.3.2 ベルヌーイ分布
2.3.3 二項分布
2.3.4 ポアソン分布
2.4 大数の法則
2.5 主要な定理のまとめ
2.6 演習問題
Chapter 3 連続型の確率分布
3.1 連続的確率空間
3.2 連続型の確率変数の性質
3.3 正規分布の性質
3.4 主要な定理のまとめ
3.5 演習問題
Chapter 4 パラメトリック推定と仮説検定
4.1 最尤推定法と不偏推定量
4.2 仮説検定の考え方
Appendix A 機械学習への応用例
A.1 最小二乗法による回帰分析
A.2 ロジスティック回帰による分類アルゴリズム
A.3 k平均法によるクラスタリング
A.4 Pythonによるアルゴリズムの実装例
Appendix B 演習問題の解答
内容についてのお問い合わせは、正誤表、追加情報をご確認後に、お送りいただくようお願いいたします。
正誤表、追加情報に掲載されていない書籍内容へのお問い合わせや
その他書籍に関するお問い合わせは、書籍のお問い合わせフォームからお送りください。
本書の書影(表紙画像)をご利用になりたい場合は書影許諾申請フォームから申請をお願いいたします。
書影(表紙画像)以外のご利用については、こちらからお問い合わせください。
刷数は奥付(書籍の最終ページ)に記載されています。
書籍の種類:
書籍の刷数:
本書に誤りまたは不十分な記述がありました。下記のとおり訂正し、お詫び申し上げます。
対象の書籍は正誤表がありません。
DualBlueMoon さん
2019-08-04
結構難しい。
tty2 さん
2020-06-27
難しかったため、パラパラ読み。時間があるとき、必要になったときに、再度読もうと思う。