Luis G.Serrano 著
株式会社クイープ 監修
株式会社クイープ 翻訳
【本書の内容】
本書は
Luis G.Serrano, "Grokking Machine Learning",
Manning Publishing, 2021
の邦訳です。
機械学習を齧ろうとすると、多くの数式と用語が次々に登場するため、あまりにも高カロリーで胸やけを起こし、消化不良で終わってしまいがちです。しかも歯を食いしばってゴールにたどり着いたとしても、実際に目の前にある問題解決には、なかなか直結しないことも多々あります。これは、機械学習の適用範囲が広大で、用意されたモデルが多岐にわたり、目の前の解決したい問題にあてはまるのがどれなのかわかりにくいことが要因です。
そこで本書では、「予測型」の機械学習に的を絞り、重要なモデルのみを解説します(できるだけ数式を使わずに!)。遭遇しがちな問題は、1つのモデルで解決できるとは限らないので、いくつか組み合わせたスタイルをとることになります。そういった(レゴブロックのような)複合モデルの作り方も紹介します。
そして、数学とコンピュータサイエンスを学んだ人しか取り組めないと思われがちな機械学習ですが、楽譜と楽理を知らなくても音楽に親しめるように、本書は「機械学習に親し」み、「なっとく」できる一冊です。
【読者が得られること】
・ 線形回帰、ロジスティック回帰、ナイーブベイズ、決定木、ニューラルネットワーク、サポートベクターマシン、アンサンブル手法などのモデルとその動作の理解
・ 実世界でのモデルの使用法と、問題に機械学習を適用する方法
・ 各モデルを最適化し、比較・改善する方法と、最適なモデルの構築
・ 実装と、実データセットによる予測
【著者について】
ルイス・G・セラーノは、これまでGoogleの機械学習エンジニア、Appleのリード人工知能教育者、Udacityの人工知能とデータサイエンスにおけるコンテンツ責任者を経て、現在はサパタコンピューティング社で量子人工知能のリサーチサイエンティストとして活躍中です。
ミシガン大学で数学の博士号を、ウォータールー大学で数学の学士号と修士号を取得し、ケベック大学モントリオール校のLaboratoire de Combinatoire et d'Informatique Mathématiqueで博士研究員として勤務していたことがあります。
YouTubeで機械学習に関するチャンネルを運営(85,000人以上の登録者と400万回以上の再生回数)し、人工知能やデータサイエンスのカンファレンスで頻繁に講演を行っています。
※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
(翔泳社)
内容についてのお問い合わせは、正誤表、追加情報をご確認後に、お送りいただくようお願いいたします。
正誤表、追加情報に掲載されていない書籍内容へのお問い合わせや
その他書籍に関するお問い合わせは、書籍のお問い合わせフォームからお送りください。
本書の書影(表紙画像)をご利用になりたい場合は書影許諾申請フォームから申請をお願いいたします。
書影(表紙画像)以外のご利用については、こちらからお問い合わせください。