BERT実践入門 PyTorch + Google Colaboratoryで学ぶあたらしい自然言語処理技術 電子書籍|翔泳社の本
  1. ホーム >
  2. 電子書籍 >
  3. BERT実践入門 PyTorch + Google Colaboratoryで学ぶあたらしい自然言語処理技術

BERT実践入門 PyTorch + Google Colaboratoryで学ぶあたらしい自然言語処理技術


形式:
電子書籍
発売日:
ISBN:
9784798177922
価格:
3,300(本体3,000円+税10%)
カテゴリ:
人工知能・機械学習
キーワード:
#プログラミング,#開発手法,#データ・データベース,#ビジネスIT
シリーズ:
AI & TECHNOLOGY
電子書籍

自然言語処理モデル「BERT」のしくみと実装手法を
PyTorchとGoogle Colaboratoryで学んでみよう!

【本書の背景】
近年、深層学習に基づく自然言語処理技術は飛躍的な発展を遂げており、翻訳、文章生成、文章のグルーピングなど様々な業務に利用されています。自然言語処理技術の中でも特に注目を集めているのが「BERT」です。

【BERTとは】
BERTは2018年の後半にGoogleから発表された、自然言語処理のための新たなディープラーニングのモデルです。「Transformer」がベースとなっており、様々な自然言語処理タスクに合わせて調整可能な汎用性があります。

【本書の概要】
PyTorchとGoogle Colaboratoryの環境を利用して、BERTの実装方法について解説します。具体的にはAttention、Transformerといった自然言語処理技術をベースに、BERTのしくみや実装方法についてサンプルを元に解説します。章末には演習を用意しています。

【対象読者】
・一歩進んだ自然言語処理技術を身につけたい方
・BERTの実装を効率よくコンパクトに学びたい方
・BERTの概要を実装を通して把握したい方

【本書の特徴】
・サンプルを元にBERTの基礎から発展的な利用方法まで学べる
・Google ColaboratoryとPyTorchという人気の開発環境、フレームワークで学べる
・Transformersライブラリを利用してBERTを実装できる

【目次】
Chapter0 イントロダクション
Chapter1 BERTの概要
Chapter2 開発環境
Chapter3 PyTorchで実装する簡単な深層学習
Chapter4 シンプルなBERTの実装
Chapter5 BERTの仕組み
Chapter6 ファインチューニングの活用
Chapter7 BERTの活用
Appendix さらに学びたい方のために

【著者プロフィール】
我妻 幸長(あづま・ゆきなが)
「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社の代表取締役。AI関連の教育と研究開発に従事。
東北大学大学院理学研究科修了。理学博士(物理学)。
法政大学デザイン工学部兼任講師。
オンライン教育プラットフォームUdemyで、10万人以上にAIを教える人気講師。

※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

(翔泳社)

画像01
画像02
画像03

Google ColaboratoryとPyTorchという人気の開発環境、フレームワークでBERTが学べる

多くのエンジニアの方が利用している人気の開発環境「Google Colaboratory」と、人気のフレームワーク「PyTorch」を利用して、BERTのしくみや実装方法を学ぶことができます。

画像04

サンプルを元にBERTの概要から発展的な利用方法まで学べる

ノートブック形式でサンプルを用意しています。サンプルを動かしながら、BERTの概要から基本的な実装手法、活用手法まで学ぶことができます。

画像05

Transformersライブラリを利用してBERTを実装できる

Hugging Faceが提供するTransformersライブラリ(分類、情報抽出、質問回答、要約、翻訳、テキスト生成などの様々な自然言語処理のための事前学習モデルが100以上の言語で用意されている)を利用して、BERTの実装手法を解説します。

目次の登録はありません。

付属データはこちら

会員特典はこちら

お問い合わせ

内容についてのお問い合わせは、正誤表、追加情報をご確認後に、お送りいただくようお願いいたします。

正誤表、追加情報に掲載されていない書籍内容へのお問い合わせや
その他書籍に関するお問い合わせは、書籍のお問い合わせフォームからお送りください。

利用許諾に関するお問い合わせ

本書の書影(表紙画像)をご利用になりたい場合は書影許諾申請フォームから申請をお願いいたします。
書影(表紙画像)以外のご利用については、こちらからお問い合わせください。

追加情報はありません。
この商品の「よくある質問」はありません。

ご購入いただいた書籍の種類を選択してください。

書籍の刷数を選択してください。

刷数は奥付(書籍の最終ページ)に記載されています。

現在表示されている正誤表の対象書籍

書籍の種類:

書籍の刷数:

本書に誤りまたは不十分な記述がありました。下記のとおり訂正し、お詫び申し上げます。

対象の書籍は正誤表がありません。

最終更新日:2024年02月28日
発生刷 ページ数 書籍改訂刷 電子書籍訂正 内容 登録日
1刷 027
本文上から1行目
BERT(Birdirectional Encoder Representation from Transformers)
BERT(Bidirectional Encoder Representations from Transformers)
2023.10.20
1刷 069
リスト3.10
f = c.view(-1)
f = e.view(-1)
2023.12.27
1刷 146
上から11行目
それでは、ここでパートの入力について解説します。
それでは、ここでBERTの入力について解説します。
2023.07.24
1刷 151
上から1行目
実はパートで使うのは・・・
実はBERTで使うのは・・・
2023.07.22
1刷 186
リスト6.5 
loss = F.cross_entropy(y.logits, t) # 交差エントロピー誤差 loss.backward() # 逆伝播により勾配を計算
loss = F.cross_entropy(y.logits, t) # 交差エントロピー誤差 optimizer.zero_grad() loss.backward() # 逆伝播により勾配を計算
2024.02.28
1刷 230
下から6行目
約25%
約0.25%
2023.08.28
1刷 262
下から12行目
BERT(Birdirectional Encoder Representation from Transformers)
BERT(Bidirectional Encoder Representations from Transformers)
2023.10.20